A string s is called good if there are no two different characters in s that have the same frequency.
Given a string s, return* the minimum number of characters you need to delete to make sgood.*
The frequency of a character in a string is the number of times it appears in the string. For example, in the string "aab", the frequency of 'a' is 2, while the frequency of 'b' is 1.
Given the heads of two singly linked-lists headA and headB, return the node at which the two lists intersect. If the two linked lists have no intersection at all, return null.
For example, the following two linked lists begin to intersect at node c1:
The test cases are generated such that there are no cycles anywhere in the entire linked structure.
Note that the linked lists must retain their original structure after the function returns.
Given the head of a linked list, return the node where the cycle begins. If there is no cycle, return null.
There is a cycle in a linked list if there is some node in the list that can be reached again by continuously following the next pointer. Internally, pos is used to denote the index of the node that tail’s next pointer is connected to (0-indexed). It is -1 if there is no cycle. Note that pos is not passed as a parameter.
Note: This is a companion problem to the System Design problem: Design TinyURL. TinyURL is a URL shortening service where you enter a URL such as https://leetcode.com/problems/design-tinyurl and it returns a short URL such as http://tinyurl.com/4e9iAk. Design a class to encode a URL and decode a tiny URL.
There is no restriction on how your encode/decode algorithm should work. You just need to ensure that a URL can be encoded to a tiny URL and the tiny URL can be decoded to the original URL.
Implement the Solution class:
Solution() Initializes the object of the system.
String encode(String longUrl) Returns a tiny URL for the given longUrl.
String decode(String shortUrl) Returns the original long URL for the given shortUrl. It is guaranteed that the given shortUrl was encoded by the same object.
/** * Your MyHashSet object will be instantiated and called as such: * MyHashSet obj = new MyHashSet(); * obj.add(key); * obj.remove(key); * boolean param_3 = obj.contains(key); */