问题概述 In MATLAB, there is a handy function called reshape which can reshape an m x n matrix into a new one with a different size r x c keeping its original data.
You are given an m x n matrix mat and two integers r and c representing the number of rows and the number of columns of the wanted reshaped matrix.
The reshaped matrix should be filled with all the elements of the original matrix in the same row-traversing order as they were.
If the reshape operation with given parameters is possible and legal, output the new reshaped matrix; Otherwise, output the original matrix.
问题描述 Given two integer arrays nums1 and nums2, return an array of their intersection. Each element in the result must appear as many times as it shows in both arrays and you may return the result in any order.
A permutation of an array of integers is an arrangement of its members into a sequence or linear order.
For example, for arr = [1,2,3], the following are considered permutations of arr: [1,2,3], [1,3,2], [3,1,2], [2,3,1].
The next permutation of an array of integers is the next lexicographically greater permutation of its integer. More formally, if all the permutations of the array are sorted in one container according to their lexicographical order, then the next permutation of that array is the permutation that follows it in the sorted container. If such arrangement is not possible, the array must be rearranged as the lowest possible order (i.e., sorted in ascending order).
For example, the next permutation of arr = [1,2,3] is [1,3,2]. Similarly, the next permutation of arr = [2,3,1] is [3,1,2]. While the next permutation of arr = [3,2,1] is [1,2,3] because [3,2,1] does not have a lexicographical larger rearrangement. Given an array of integers nums, find the next permutation of nums.
The replacement must be in place and use only constant extra memory.