429. N-ary Tree Level Order Traversal

429. N-ary Tree Level Order Traversal

Question

Given an n-ary tree, return the level order traversal of its nodes’ values.

Nary-Tree input serialization is represented in their level order traversal, each group of children is separated by the null value (See examples).

Solution

BFS搜索,层序遍历。
用level记录上一层的个数。
当队列不为空时,每次挤出level个节点,并将其子节点加入队列。
将当前层次的节点值加入列表。
最后更新level的数量。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/*
// Definition for a Node.
class Node {
public int val;
public List<Node> children;

public Node() {}

public Node(int _val) {
val = _val;
}

public Node(int _val, List<Node> _children) {
val = _val;
children = _children;
}
};
*/

class Solution {
public List<List<Integer>> levelOrder(Node root) {
List<List<Integer>> res = new ArrayList<>();
if(root == null) return res;
Queue<Node> q = new LinkedList<>();
q.add(root);
int level = 1;

while(!q.isEmpty()){
List<Integer> arr = new ArrayList<>();
for(int i = 0; i < level; i++){
Node curr = q.poll();
for(Node child : curr.children){
q.offer(child);
}
arr.add(curr.val);
}
res.add(arr);
level = q.size();
}
return res;
}
}
967. Numbers With Same Consecutive Differences

967. Numbers With Same Consecutive Differences

Question

Return all non-negative integers of length n such that the absolute difference between every two consecutive digits is k.

Note that every number in the answer must not have leading zeros. For example, 01 has one leading zero and is invalid.

You may return the answer in any order.

Solution

回溯,每次传入上一个数字和剩余的位数。
全局变量sum记录加和。
DFS搜索,每次计算下一位的可行数字并递归。
用回溯维护sum的值。
如果剩余位数为1,则将当前的sum加入结果,并清零sum。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class Solution {
List<Integer> res;
int sum;
public int[] numsSameConsecDiff(int n, int k) {
res = new ArrayList<>();
for(int i = 1; i < 10; i++){
sum = 0;
dfs(i, n, k);
}

int[] ret = new int[res.size()];
for(int i = 0; i < res.size(); i++){
ret[i] = res.get(i);
}
return ret;
}

private void dfs(int prev, int n, int k){
sum += prev;
if(n == 1){
res.add(sum);
return;
}

if(k == 0){
sum *= 10;
dfs(prev + k, n-1, k);
sum /= 10;
return;
}
if(prev + k < 10){
sum *= 10;
dfs(prev + k, n-1, k);
sum /= 10;
}
if(prev >= k){
sum *= 10;
dfs(prev - k, n-1, k);
sum /= 10;
}
}
}

637. Average of Levels in Binary Tree

637. Average of Levels in Binary Tree

Question

Given the root of a binary tree, return the average value of the nodes on each level in the form of an array. Answers within 10<sup>-5</sup> of the actual answer will be accepted.

Solution

BFS搜索,记录单层的总和sum和单层的个数count。
每次遍历一个层级的所有节点,并更新sum和count。
遍历完毕后将当层级的平均数加入列表,同时将sum和count清零。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Double> averageOfLevels(TreeNode root) {
List<Double> res = new ArrayList<>();
Queue<TreeNode> q = new LinkedList<>();

double sum = 0, count = 0;
int level = 1;
q.add(root);

while(!q.isEmpty()){

for(int i = 0; i < level; i++){
TreeNode curr = q.poll();
if(curr.left != null) q.add(curr.left);
if(curr.right != null) q.add(curr.right);
count++;
sum += curr.val;
}
res.add(sum/count);
sum = 0;
count = 0;
level = q.size();
}
return res;
}
}
1448. Count Good Nodes in Binary Tree

1448. Count Good Nodes in Binary Tree

Question

Given a binary tree root, a node X in the tree is named good if in the path from root to X there are no nodes with a value greater than X.

Return the number of good nodes in the binary tree.

Solution

DFS搜索,每次传入当前分支的最大值。
如果当前值大于等于最大值,则count+1。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
int count;
public int goodNodes(TreeNode root) {
count = 0;
dfs(root, Integer.MIN_VALUE);
return count;
}

private void dfs(TreeNode root, int max){
if(root == null) return;
if(root.val >= max){
count++;
max = root.val;
}

dfs(root.left, max);
dfs(root.right, max);
}
}
1329. Sort the Matrix Diagonally

1329. Sort the Matrix Diagonally

Question

A matrix diagonal is a diagonal line of cells starting from some cell in either the topmost row or leftmost column and going in the bottom-right direction until reaching the matrix’s end. For example, the matrix diagonal starting from mat[2][0], where mat is a 6 x 3 matrix, includes cells mat[2][0], mat[3][1], and mat[4][2].

Given an m x n matrix mat of integers, sort each matrix diagonal in ascending order and return the resulting matrix.

Solution

分别遍历数组的两条边。
按对角线顺序进行遍历,用列表记录访问过的数字。
排序列表后按对角线填入原数组。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
class Solution {
public int[][] diagonalSort(int[][] mat) {
int m = mat.length, n = mat[0].length;
List<Integer> arr = new ArrayList<>();

for(int t = 0; t < m; t++){
int i = t, j = 0;

while(i < m && j < n){
arr.add(mat[i][j]);
i++;
j++;
}

Collections.sort(arr);

i = t;
j = 0;

while(i < m && j < n){
mat[i][j] = arr.get(j);
i++;
j++;
}
arr.clear();
}

for(int t = 1; t < n; t++){
int i = 0, j = t;

while(i < m && j < n){
arr.add(mat[i][j]);
i++;
j++;
}

Collections.sort(arr);

i = 0;
j = t;

while(i < m && j < n){
mat[i][j] = arr.get(i);
i++;
j++;
}
arr.clear();
}
return mat;
}
}
363. Max Sum of Rectangle No Larger Than K

363. Max Sum of Rectangle No Larger Than K

Question

Given an m x n matrix matrix and an integer k, return the max sum of a rectangle in the matrix such that its sum is no larger than k.

It is guaranteed that there will be a rectangle with a sum no larger than k.

Solution

前缀和,计算矩阵中每个位置对应的方形的和。
遍历方形的两个对角线上的点。
其面积等于大块加小块的面积减去两个长方形的面积。
如果面积有小于k的,则记录其最大值并返回。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
public int maxSumSubmatrix(int[][] matrix, int k) {
int x = matrix.length, y = matrix[0].length, max = Integer.MIN_VALUE;
int[][] sum = new int[x+1][y+1];

for(int i = 1; i <= x; i++){
int total = 0;
for(int j = 1; j <= y; j++){
total += matrix[i-1][j-1];
sum[i][j] = sum[i-1][j] + total;
}
}

for(int i = 0; i <= x; i++){
for(int j = 0; j <= y; j++){
for(int m = i + 1; m <= x; m++){
for(int n = j + 1; n <= y; n++){
int area = sum[m][n] + sum[i][j] - sum[m][j] - sum[i][n];
if(area <= k) max = Math.max(max, area);
}
}
}
}
return max;
}
}
869. Reordered Power of 2

869. Reordered Power of 2

Question

You are given an integer n. We reorder the digits in any order (including the original order) such that the leading digit is not zero.

Return true if and only if we can do this so that the resulting number is a power of two.

Solution

打表,将所有二的指数全部计算出来,并用数组统计各个数字出现的频率。
然后同样统计n中各个数字出现的频率。

如果两者中有频率完全相同的情况,则返回true,反之返回false。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
class Solution {
public boolean reorderedPowerOf2(int n) {
int[] reorders = new int[10];
int m = 1, digits = 0;
for(int i = n; i > 0; i/=10){
reorders[i % 10]++;
digits++;
}

int size = 0;
List<Integer[]> powerOfTwo = new ArrayList<>();

while(m > 0 && size <= digits){
size = 0;
Integer[] bin = new Integer[10];
Arrays.fill(bin, 0);
for(int i = m; i > 0; i/=10){
size++;
bin[i % 10]++;
}
if(size == digits) powerOfTwo.add(bin);
m *= 2;
}

for(Integer[] bin : powerOfTwo) if(check(bin, reorders)) return true;
return false;
}

private boolean check(Integer[] bin, int[] reorders){
for(int i = 0; i < bin.length; i++) if(bin[i] != reorders[i]) return false;
return true;
}
}

Solution 2

回溯,遍历计算可以组成的所有数字。
打表记录所有二的指数并记录在哈希表内,如果所有组成数字中有哈希表内的数字则返回true,反之返回false。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
class Solution {
HashSet<Integer> visited, set, numbers;
List<Integer> arr, res;
public boolean reorderedPowerOf2(int n) {
int m = 1;
set = new HashSet<>();
visited = new HashSet<>();
numbers = new HashSet<>();
res = new ArrayList<Integer>();
while(m > 0){
set.add(m);
m *= 2;
}

arr = new ArrayList<>();

while(n > 0){
arr.add(n % 10);
n /= 10;
}

for(int i = 0; i< arr.size(); i++){
if(arr.get(i) == 0) continue;
visited.add(i);
reorder(arr.get(i));
visited.remove(i);
}


for(int num : res) if(set.contains(num)) return true;
return false;
}

private void reorder(int num){
if(visited.size() == arr.size()){
res.add(num);
return;
};

if(numbers.contains(num)) return;
numbers.add(num);

for(int i = 0; i < arr.size(); i++){
if(visited.contains(i)) continue;
int next = num * 10 + arr.get(i);
visited.add(i);
reorder(next);
visited.remove(i);
}
}
}
383. Ransom Note

383. Ransom Note

Question

Given two strings ransomNote and magazine, return true* if ransomNote can be constructed by using the letters from magazine and false otherwise*.

Each letter in magazine can only be used once in ransomNote.

Solution

数组统计,统计magazine内的字符。
遍历ransomNote,如果对字符数组位置为0则返回false。
每次遍历减少数组统计结果。

最后返回true。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
class Solution {
public boolean canConstruct(String ransomNote, String magazine) {
char[] bin = new char[26];

for(char c : magazine.toCharArray()) bin[c-'a']++;
for(char c : ransomNote.toCharArray()){
if(bin[c-'a'] == 0) return false;
bin[c-'a']--;
}

return true;
}
}
326. Power of Three

326. Power of Three

Question

Given an integer n, return true if it is a power of three. Otherwise, return false.

An integer n is a power of three, if there exists an integer x such that n == 3<sup>x</sup>.

Solution

与isPowerOfFour相同,如果n小于0则返回false。
如果n等于1则返回true。
递归,如果n可以整除3,则返回isPowerOfThree(n / 3)。
否则返回false。

Code

1
2
3
4
5
6
7
8
class Solution {
public boolean isPowerOfThree(int n) {
if(n <= 0) return false;
if(n == 1) return true;
if(n % 3 == 0) return isPowerOfThree(n / 3);
else return false;
}
}
234. Palindrome Linked List

234. Palindrome Linked List

Question

Given the head of a singly linked list, return true if it is a palindrome.

Solution 1

快慢指针,快指针遍历到底时慢指针正好到一半。
根据快指针的位置判断奇数个还是偶数个。
如果是奇数个则翻转链表时需要向前移动一位。

接下来翻转后半段链表。
翻转完成后从第一段的头部和翻转过的链表头部开始遍历。
如果两个节点的值不同则返回false。

遍历完毕返回true。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {

public boolean isPalindrome(ListNode head) {
int len = 0;
ListNode slow = head, fast = head;

while(fast != null && fast.next != null){
slow = slow.next;
fast = fast.next.next;
}

ListNode curr = fast == null ? slow : slow.next, prev = null; //make sure curr is the head of the 2nd part

while(curr != null){ //reverse the 2nd part of the nodes
ListNode temp = curr.next; //preserve nodes that after current node
curr.next = prev; //add previous node to the current node's next
prev = curr; //save previous node
curr = temp; //update current node
}

while(head != null && prev != null){
if(head.val != prev.val) return false;
prev = prev.next;
head = head.next;
}
return true;
}
}

Solution 2

快慢指针的原理,不是记录长度而是当快指针遍历到链表尾时停止。
然后对照栈内的值是否和剩余的值相等。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {

public boolean isPalindrome(ListNode head) {
ListNode slow = head, fast = head;
Stack<ListNode> stack = new Stack<>();

while(fast != null && fast.next != null){
stack.add(slow);

slow = slow.next;
fast = fast.next.next;
}

if(fast != null) slow = slow.next;

while(!stack.isEmpty()){
if(stack.pop().val != slow.val) return false;
slow = slow.next;
}

return true;
}
}

Solution 3

回文,先计算链表长度。
记录链表长度是否为奇数。

如果链表长度为偶数,则将一半的节点放入栈中。
如果为奇数则抛弃一个节点。
剩下一半的节点和栈顶节点比较,如果值不相同则返回false。

遍历完成返回true。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {

public boolean isPalindrome(ListNode head) {
int len = 0;
ListNode root = head;
Stack<ListNode> stack = new Stack<>();

while(root != null){
root = root.next;
len++;
}

root = head;
for(int i = 0; i < len/2; i++){
stack.add(root);
root = root.next;
}

if(len % 2 != 0) root = root.next;

for(int i = 0; i < len/2; i++){
if(stack.peek().val == root.val) stack.pop();
else return false;
root = root.next;
}
return true;
}
}
342. Power of Four

342. Power of Four

Question

Given an integer n, return true if it is a power of four. Otherwise, return false.

An integer n is a power of four, if there exists an integer x such that n == 4<sup>x</sup>.

Solution

递归,如果n小于等于零则返回false。
如果n等于1则返回true。

如果n可以除以4,则递归返回n/4。

Code

1
2
3
4
5
6
7
8
9
class Solution {
public boolean isPowerOfFour(int n) {
if(n <= 0) return false;
if(n == 1) return true;

if(n % 4 == 0) return isPowerOfFour(n / 4);
else return false;
}
}
659. Split Array into Consecutive Subsequences

659. Split Array into Consecutive Subsequences

Question

You are given an integer array nums that is sorted in non-decreasing order.

Determine if it is possible to split nums into one or more subsequences such that both of the following conditions are true:

  • Each subsequence is a consecutive increasing sequence (i.e. each integer is exactly one more than the previous integer).
  • All subsequences have a length of 3** or more**.

Return true* if you can split nums according to the above conditions, or false otherwise*.

A subsequence of an array is a new array that is formed from the original array by deleting some (can be none) of the elements without disturbing the relative positions of the remaining elements. (i.e., [1,3,5] is a subsequence of [<u>1</u>,2,<u>3</u>,4,<u>5</u>] while [1,3,2] is not).

Solution

用优先级队列储存每个可组成的列表。
优先级队列根据列表的长度排列。

用哈希表记录每个列表的尾数,和其对应的优先级队列。
遍历所有数字,如果存在当前数字num-1为尾数的队列,则获取长度最小的列表,并添加当前数字num在列表中。
然后将新的优先级队列放入哈希表中。

遍历整个哈希表中的数组,如果有数组的长度小于3,则返回false,否则返回true。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class Solution {
public boolean isPossible(int[] nums) {
HashMap<Integer, PriorityQueue<List<Integer>>> map = new HashMap<>();

for(int num : nums){
PriorityQueue<List<Integer>> last = map.getOrDefault(num - 1, null);
PriorityQueue<List<Integer>> curr = map.getOrDefault(num, new PriorityQueue<List<Integer>>((a,b) -> a.size() - b.size()));

if(last == null || last.size() == 0){
List<Integer> arr = new ArrayList<>();
arr.add(num);
curr.add(arr);
map.put(num, curr);
}
else{
List<Integer> arr = last.poll();
arr.add(num);
curr.add(arr);
map.put(num, curr);
}
}

for(int last : map.keySet()){
for(List<Integer> arr : map.get(last)){
if(arr.size() < 3) return false;
}
}
return true;

}
}

Solution 2

不需要保存整个列表,只需要保存对应末尾数字的列表长度即可。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Solution {
public boolean isPossible(int[] nums) {
HashMap<Integer, PriorityQueue<Integer>> map = new HashMap<>();

for(int num : nums){
PriorityQueue<Integer> last = map.getOrDefault(num - 1, null);
PriorityQueue<Integer> curr = map.getOrDefault(num, new PriorityQueue<Integer>());

if(last == null || last.size() == 0){
curr.add(1);
map.put(num, curr);
}
else{
int min = last.poll();
curr.add(min+1);
map.put(num, curr);
}
}

for(int last : map.keySet()){
for(int len : map.get(last)){
if(len < 3) return false;
}
}
return true;

}
}
804. Unique Morse Code Words

804. Unique Morse Code Words

Question

International Morse Code defines a standard encoding where each letter is mapped to a series of dots and dashes, as follows:

  • 'a' maps to ".-",
  • 'b' maps to "-...",
  • 'c' maps to "-.-.", and so on.

For convenience, the full table for the 26 letters of the English alphabet is given below:

[".-","-...","-.-.","-..",".","..-.","--.","....","..",".---","-.-",".-..","--","-.","---",".--.","--.-",".-.","...","-","..-","...-",".--","-..-","-.--","--.."]

Given an array of strings words where each word can be written as a concatenation of the Morse code of each letter.

  • For example, "cab" can be written as "-.-..--...", which is the concatenation of "-.-.", ".-", and "-...". We will call such a concatenation the transformation of a word.

Return the number of different transformations among all words we have.

Solution

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public int uniqueMorseRepresentations(String[] words) {
String[] alphabet = new String[]{".-","-...","-.-.","-..",".","..-.","--.",
"....","..",".---","-.-",".-..","--","-.",
"---",".--.","--.-",".-.","...","-","..-",
"...-",".--","-..-","-.--","--.."};
HashSet<String> set = new HashSet<>();

for(String word : words){
StringBuffer sb = new StringBuffer();
for(char c : word.toCharArray()){
sb.append(alphabet[c - 'a']);
}
set.add(sb.toString());
}

return set.size();
}
}
13. Roman to Integer

13. Roman to Integer

Question

Roman numerals are represented by seven different symbols: I, V, X, L, C, D and M.

Symbol       Value
I             1
V             5
X             10
L             50
C             100
D             500
M             1000

For example, 2 is written as II in Roman numeral, just two ones added together. 12 is written as XII, which is simply X + II. The number 27 is written as XXVII, which is XX + V + II.

Roman numerals are usually written largest to smallest from left to right. However, the numeral for four is not IIII. Instead, the number four is written as IV. Because the one is before the five we subtract it making four. The same principle applies to the number nine, which is written as IX. There are six instances where subtraction is used:

  • I can be placed before V (5) and X (10) to make 4 and 9.
  • X can be placed before L (50) and C (100) to make 40 and 90.
  • C can be placed before D (500) and M (1000) to make 400 and 900.

Given a roman numeral, convert it to an integer.

Solution

倒叙遍历,记录几个mark以标注是否出现对应的字母。

初始res为0,根据字符加减数值。
如果出现则将mark设置为真。
如果mark为真,且上一个字符出现对应需要减去的罗马字符,则改加为减。

最后返回res值。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
class Solution {
public int romanToInt(String s) {
int res = 0;
boolean markX = false, markC = false, markM = false;

for(int i = s.length()-1; i >= 0; i--){
char c = s.charAt(i);
if(c == 'I'){
if(markX) res -= 1;
else res += 1;
}
else if(c == 'V'){
markX = true;
res += 5;
}
else if(c == 'X'){
markX = true;
if(markC) res -= 10;
else res += 10;
}
else if(c == 'L'){
markC = true;
res += 50;
}
else if(c == 'C'){
markC = true;
if(markM) res -= 100;
else res += 100;
}
else if(c == 'D'){
markM = true;
res += 500;
}
else if(c == 'M'){
markM = true;
res += 1000;
}
}
return res;
}
}
823. Binary Trees With Factors

823. Binary Trees With Factors

Question

Given an array of unique integers, arr, where each integer arr[i] is strictly greater than 1.

We make a binary tree using these integers, and each number may be used for any number of times. Each non-leaf node’s value should be equal to the product of the values of its children.

Return the number of binary trees we can make. The answer may be too large so return the answer modulo 10<sup>9</sup><span> </span>+ 7.

Solution

根据题意,二叉树的根是两个子节点的乘积,因此一个根节点可组成的二叉树总数,相当于其左子节点可组成的二叉树总数,乘以其右子节点可组成的二叉树总数。

因此我们可以先将数组arr排序,用dp[]数组记录以从小到大的数字作为根节点可组成的最大二叉树总数。

由于每个根节点至少可以和自身组成一个节点,因此将dp[]数组初始化为1。

动态规划

从小到大遍历dp[]数组。
在遍历时,从遍历数值i的左侧选取当前位置的子节点。(根据题意子节点一定小于根节点)
当当前位置arr[i]可以整除arr[left]时,则有可能存在另一个子节点。此时根据哈希表中获得对应的另一个子节点right。如果right存在,则dp[i]更新为dp[i]+dp[left]*dp[right]的值。

最后将dp[]数组中记录的所有数字加和并返回。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
class Solution {
public int numFactoredBinaryTrees(int[] arr) {
final int MOD = (int) Math.pow(10, 9) + 7;
Arrays.sort(arr); //from minium to maxium
HashMap<Integer, Integer> map = new HashMap<>();

for(int i = 0; i < arr.length; i++){
map.put(arr[i], i);
}

long[] dp = new long[arr.length];
Arrays.fill(dp, 1);

for(int i = 0; i < arr.length; i++){
for(int left = 0; left < i; left++){
if(arr[i] % arr[left] == 0){ //make sure divisible
int k = arr[i] / arr[left];
if(map.containsKey(k)){
int right = map.get(k);
dp[i] = (dp[i] + dp[left] * dp[right]) % MOD;
}
}
}
}

int res = 0;

for(long num : dp){
res += num;
res %= MOD;
}

return (int) res;
}
}