Given the head of a linked list, return the node where the cycle begins. If there is no cycle, return null.
There is a cycle in a linked list if there is some node in the list that can be reached again by continuously following the next pointer. Internally, pos is used to denote the index of the node that tail’s next pointer is connected to (0-indexed). It is -1 if there is no cycle. Note that pos is not passed as a parameter.
You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sum to target.
Each number in candidates may only be used once in the combination.
Note: The solution set must not contain duplicate combinations.
Given an array of distinct integers candidates and a target integer target, return a list of all unique combinations of candidates where the chosen numbers sum to target. You may return the combinations in any order.
The same number may be chosen from candidates an unlimited number of times. Two combinations are unique if the frequency of at least one of the chosen numbers is different.
It is guaranteed that the number of unique combinations that sum up to target is less than 150 combinations for the given input.
Design an iterator that supports the peek operation on an existing iterator in addition to the hasNext and the next operations.
Implement the PeekingIterator class:
PeekingIterator(Iterator nums) Initializes the object with the given integer iterator iterator.
int next() Returns the next element in the array and moves the pointer to the next element.
boolean hasNext() Returns true if there are still elements in the array.
int peek() Returns the next element in the array without moving the pointer.
Note: Each language may have a different implementation of the constructor and Iterator, but they all support the int next() and boolean hasNext() functions.
classPeekingIteratorimplementsIterator<Integer> { Queue<Integer> q; publicPeekingIterator(Iterator<Integer> iterator) { // initialize any member here. q = newLinkedList<>(); while(iterator.hasNext()){ q.add(iterator.next()); } } // Returns the next element in the iteration without advancing the iterator. public Integer peek() { return q.peek(); } // hasNext() and next() should behave the same as in the Iterator interface. // Override them if needed. @Override public Integer next() { return q.poll(); } @Override publicbooleanhasNext() { return !q.isEmpty(); } }
The DNA sequence is composed of a series of nucleotides abbreviated as ‘A’, ‘C’, ‘G’, and ‘T’.
For example, “ACGAATTCCG” is a DNA sequence. When studying DNA, it is useful to identify repeated sequences within the DNA.
Given a string s that represents a DNA sequence, return all the 10-letter-long sequences (substrings) that occur more than once in a DNA molecule. You may return the answer in any order.
An underground railway system is keeping track of customer travel times between different stations. They are using this data to calculate the average time it takes to travel from one station to another.
Implement the UndergroundSystem class:
void checkIn(int id, string stationName, int t)
A customer with a card ID equal to id, checks in at the station stationName at time t.
A customer can only be checked into one place at a time.
void checkOut(int id, string stationName, int t)
A customer with a card ID equal to id, checks out from the station stationName at time t.
Returns the average time it takes to travel from startStation to endStation.
The average time is computed from all the previous traveling times from startStation to endStation that happened directly, meaning a check in at startStation followed by a check out from endStation.
The time it takes to travel from startStation to endStation may be different from the time it takes to travel from endStation to startStation.
There will be at least one customer that has traveled from startStation to endStation before getAverageTime is called. You may assume all calls to the checkIn and checkOut methods are consistent. If a customer checks in at time t1 then checks out at time t2, then t1 < t2. All events happen in chronological order.
/** * Your UndergroundSystem object will be instantiated and called as such: * UndergroundSystem obj = new UndergroundSystem(); * obj.checkIn(id,stationName,t); * obj.checkOut(id,stationName,t); * double param_3 = obj.getAverageTime(startStation,endStation); */
Given a directed acyclic graph (DAG) of n nodes labeled from 0 to n - 1, find all possible paths from node 0 to node n - 1 and return them in any order.
The graph is given as follows: graph[i] is a list of all nodes you can visit from node i (i.e., there is a directed edge from node i to node graph[i][j]).
Note: This is a companion problem to the System Design problem: Design TinyURL. TinyURL is a URL shortening service where you enter a URL such as https://leetcode.com/problems/design-tinyurl and it returns a short URL such as http://tinyurl.com/4e9iAk. Design a class to encode a URL and decode a tiny URL.
There is no restriction on how your encode/decode algorithm should work. You just need to ensure that a URL can be encoded to a tiny URL and the tiny URL can be decoded to the original URL.
Implement the Solution class:
Solution() Initializes the object of the system.
String encode(String longUrl) Returns a tiny URL for the given longUrl.
String decode(String shortUrl) Returns the original long URL for the given shortUrl. It is guaranteed that the given shortUrl was encoded by the same object.