62. Unique Paths

There is a robot on an m x n grid. The robot is initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]). The robot can only move either down or right at any point in time.

Given the two integers m and n, return the number of possible unique paths that the robot can take to reach the bottom-right corner.

The test cases are generated so that the answer will be less than or equal to 2 * 109.

动态规划,每一个位置的线路都等于其左侧和上侧的两条线路的加和。
将初始的两个边值设置为1,然后计算直至终点位置即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
int count;
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
for(int i = 0; i < m; i++){
dp[i][0] = 1;
}
for(int j = 0; j < n; j++){
dp[0][j] = 1;
}

for(int i = 1; i < m; i++){
for(int j = 1; j < n; j++){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}
Author

Xander

Posted on

2022-04-29

Updated on

2022-04-29

Licensed under

Comments